feat:初版

This commit is contained in:
2025-12-03 15:48:44 +08:00
commit b4df26f61d
199 changed files with 23434 additions and 0 deletions

372
plugins/JimengAI/main.py Normal file
View File

@@ -0,0 +1,372 @@
"""
即梦AI绘图插件
支持命令触发和LLM工具调用
"""
import asyncio
import tomllib
import aiohttp
import uuid
from pathlib import Path
from datetime import datetime
from typing import List, Optional
from loguru import logger
from utils.plugin_base import PluginBase
from utils.decorators import on_text_message
from WechatHook import WechatHookClient
class TokenState:
"""Token轮询状态管理"""
def __init__(self):
self.token_index = 0
self._lock = asyncio.Lock()
async def get_next_token(self, tokens: List[str]) -> str:
"""获取下一个可用的token"""
async with self._lock:
if not tokens:
raise ValueError("Token列表为空")
return tokens[self.token_index % len(tokens)]
async def rotate(self, tokens: List[str]):
"""轮换到下一个token"""
async with self._lock:
if tokens:
self.token_index = (self.token_index + 1) % len(tokens)
class JimengAI(PluginBase):
"""即梦AI绘图插件"""
description = "即梦AI绘图插件 - 支持AI绘图和LLM工具调用"
author = "ShiHao"
version = "1.0.0"
def __init__(self):
super().__init__()
self.config = None
self.token_state = TokenState()
self.images_dir = None
async def async_init(self):
"""异步初始化"""
config_path = Path(__file__).parent / "config.toml"
with open(config_path, "rb") as f:
self.config = tomllib.load(f)
# 创建图片目录
self.images_dir = Path(__file__).parent / "images"
self.images_dir.mkdir(exist_ok=True)
logger.success(f"即梦AI插件初始化完成配置了 {len(self.config['api']['tokens'])} 个token")
async def generate_image(self, prompt: str, **kwargs) -> List[str]:
"""
生成图像
Args:
prompt: 提示词
**kwargs: 其他参数model, width, height, sample_strength, negative_prompt
Returns:
图片本地路径列表
"""
api_config = self.config["api"]
gen_config = self.config["generation"]
model = kwargs.get("model", gen_config["default_model"])
width = kwargs.get("width", gen_config["default_width"])
height = kwargs.get("height", gen_config["default_height"])
sample_strength = kwargs.get("sample_strength", gen_config["default_sample_strength"])
negative_prompt = kwargs.get("negative_prompt", gen_config["default_negative_prompt"])
# 参数验证
sample_strength = max(0.0, min(1.0, sample_strength))
width = max(64, min(2048, width))
height = max(64, min(2048, height))
tokens = api_config["tokens"]
max_retry = gen_config["max_retry_attempts"]
# 尝试每个token
for token_attempt in range(len(tokens)):
current_token = await self.token_state.get_next_token(tokens)
for attempt in range(max_retry):
if attempt > 0:
await asyncio.sleep(min(2 ** attempt, 10))
try:
url = f"{api_config['base_url'].rstrip('/')}/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {current_token}"
}
payload = {
"model": model,
"messages": [{"role": "user", "content": prompt}],
"prompt": prompt,
"negativePrompt": negative_prompt,
"width": width,
"height": height,
"sample_strength": sample_strength
}
logger.info(f"即梦AI请求: {model}, 尺寸: {width}x{height}, 提示词: {prompt[:50]}...")
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=api_config["timeout"])) as session:
async with session.post(url, headers=headers, json=payload) as response:
if response.status == 200:
data = await response.json()
logger.debug(f"API返回数据: {data}")
if "error" in data:
logger.error(f"API错误: {data['error']}")
continue
# 提取图片URL
image_paths = await self._extract_images(data)
if image_paths:
logger.success(f"成功生成 {len(image_paths)} 张图像")
return image_paths
else:
logger.warning(f"未找到图像数据API返回: {str(data)[:200]}")
continue
elif response.status == 401:
logger.warning("Token认证失败尝试下一个token")
break
elif response.status == 429:
logger.warning("请求频率限制,等待后重试")
await asyncio.sleep(5)
continue
else:
error_text = await response.text()
logger.error(f"API请求失败: {response.status}, {error_text[:200]}")
continue
except asyncio.TimeoutError:
logger.warning(f"请求超时,重试中... ({attempt + 1}/{max_retry})")
continue
except Exception as e:
logger.error(f"请求异常: {e}")
continue
# 当前token失败轮换
await self.token_state.rotate(tokens)
logger.error("所有token都失败了")
return []
async def _extract_images(self, data: dict) -> List[str]:
"""从API响应中提取图片"""
import re
image_paths = []
# 格式1: OpenAI格式的choices
if "choices" in data and data["choices"]:
for choice in data["choices"]:
if "message" in choice and "content" in choice["message"]:
content = choice["message"]["content"]
if "https://" in content:
urls = re.findall(r'https://[^\s\)]+', content)
for url in urls:
path = await self._download_image(url)
if path:
image_paths.append(path)
# 格式2: data数组
elif "data" in data:
data_list = data["data"] if isinstance(data["data"], list) else [data["data"]]
for item in data_list:
if isinstance(item, str) and item.startswith("http"):
path = await self._download_image(item)
if path:
image_paths.append(path)
elif isinstance(item, dict) and "url" in item:
path = await self._download_image(item["url"])
if path:
image_paths.append(path)
# 格式3: images数组
elif "images" in data:
images_list = data["images"] if isinstance(data["images"], list) else [data["images"]]
for item in images_list:
if isinstance(item, str) and item.startswith("http"):
path = await self._download_image(item)
if path:
image_paths.append(path)
elif isinstance(item, dict) and "url" in item:
path = await self._download_image(item["url"])
if path:
image_paths.append(path)
# 格式4: 单个URL
elif "url" in data:
path = await self._download_image(data["url"])
if path:
image_paths.append(path)
return image_paths
async def _download_image(self, url: str) -> Optional[str]:
"""下载图片到本地"""
try:
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=30)) as session:
async with session.get(url) as response:
if response.status == 200:
content = await response.read()
# 生成文件名
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
uid = uuid.uuid4().hex[:8]
file_path = self.images_dir / f"jimeng_{ts}_{uid}.jpg"
# 保存文件
with open(file_path, "wb") as f:
f.write(content)
logger.info(f"图片下载成功: {file_path}")
return str(file_path)
except Exception as e:
logger.error(f"下载图片失败: {e}")
return None
@on_text_message(priority=70)
async def handle_message(self, bot: WechatHookClient, message: dict):
"""处理文本消息"""
if not self.config["behavior"]["enable_command"]:
return True
content = message.get("Content", "").strip()
from_wxid = message.get("FromWxid", "")
is_group = message.get("IsGroup", False)
# 检查群聊/私聊开关
if is_group and not self.config["behavior"]["enable_group"]:
return True
if not is_group and not self.config["behavior"]["enable_private"]:
return True
# 检查是否是绘图命令(精确匹配命令+空格+提示词)
keywords = self.config["behavior"]["command_keywords"]
matched_keyword = None
for keyword in keywords:
if content.startswith(keyword + " "):
matched_keyword = keyword
break
if not matched_keyword:
return True
# 提取提示词
prompt = content[len(matched_keyword):].strip()
if not prompt:
await bot.send_text(from_wxid, "❌ 请提供绘图提示词\n用法: /绘图 <提示词>")
return False
logger.info(f"收到绘图请求: {prompt[:50]}...")
# 发送处理中提示
await bot.send_text(from_wxid, "🎨 正在为您生成图像,请稍候...")
try:
# 生成图像
image_paths = await self.generate_image(prompt)
if image_paths:
# 直接发送图片
await bot.send_image(from_wxid, image_paths[0])
logger.success(f"绘图成功,已发送图片")
else:
await bot.send_text(from_wxid, "❌ 图像生成失败,请稍后重试")
except Exception as e:
logger.error(f"绘图处理失败: {e}")
await bot.send_text(from_wxid, f"❌ 处理失败: {str(e)}")
return False
def get_llm_tools(self) -> List[dict]:
"""
返回LLM工具定义
供AIChat插件调用
"""
if not self.config["llm_tool"]["enabled"]:
return []
return [{
"type": "function",
"function": {
"name": self.config["llm_tool"]["tool_name"],
"description": self.config["llm_tool"]["tool_description"],
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "图像生成提示词,描述想要生成的图像内容"
},
"width": {
"type": "integer",
"description": "图像宽度64-2048默认1024",
"default": 1024
},
"height": {
"type": "integer",
"description": "图像高度64-2048默认1024",
"default": 1024
}
},
"required": ["prompt"]
}
}
}]
async def execute_llm_tool(self, tool_name: str, arguments: dict, bot: WechatHookClient, from_wxid: str) -> dict:
"""
执行LLM工具调用
供AIChat插件调用
Returns:
{"success": bool, "message": str, "images": List[str]}
"""
expected_tool_name = self.config["llm_tool"]["tool_name"]
logger.info(f"JimengAI工具检查: 收到={tool_name}, 期望={expected_tool_name}")
if tool_name != expected_tool_name:
return None # 不是本插件的工具返回None让其他插件处理
try:
prompt = arguments.get("prompt")
if not prompt:
return {"success": False, "message": "缺少提示词参数"}
logger.info(f"LLM工具调用绘图: {prompt[:50]}...")
# 生成图像(使用配置的默认尺寸)
gen_config = self.config["generation"]
image_paths = await self.generate_image(
prompt=prompt,
width=arguments.get("width", gen_config["default_width"]),
height=arguments.get("height", gen_config["default_height"])
)
if image_paths:
# 直接发送图片
await bot.send_image(from_wxid, image_paths[0])
return {
"success": True,
"message": "已生成并发送图像",
"images": [image_paths[0]]
}
else:
return {"success": False, "message": "图像生成失败"}
except Exception as e:
logger.error(f"LLM工具执行失败: {e}")
return {"success": False, "message": f"执行失败: {str(e)}"}