feat: 持久记忆和代码优化、函数工具筛选

This commit is contained in:
2025-12-10 17:21:43 +08:00
parent 7d3ef70093
commit e0a38eb6f2
87 changed files with 2179 additions and 241 deletions

319
plugins/NanoImage/main.py Normal file
View File

@@ -0,0 +1,319 @@
"""
NanoImage AI绘图插件
支持 OpenAI 格式的绘图 API用户可自定义 URL、模型 ID、密钥
支持命令触发和 LLM 工具调用
"""
import asyncio
import tomllib
import httpx
import uuid
import base64
from pathlib import Path
from datetime import datetime
from typing import List, Optional
from loguru import logger
from utils.plugin_base import PluginBase
from utils.decorators import on_text_message
from WechatHook import WechatHookClient
class NanoImage(PluginBase):
"""NanoImage AI绘图插件"""
description = "NanoImage AI绘图插件 - 支持 OpenAI 格式的绘图 API"
author = "ShiHao"
version = "1.0.0"
def __init__(self):
super().__init__()
self.config = None
self.images_dir = None
async def async_init(self):
"""异步初始化"""
config_path = Path(__file__).parent / "config.toml"
with open(config_path, "rb") as f:
self.config = tomllib.load(f)
# 创建图片目录
self.images_dir = Path(__file__).parent / "images"
self.images_dir.mkdir(exist_ok=True)
logger.success(f"NanoImage AI插件初始化完成模型: {self.config['api']['model']}")
async def generate_image(self, prompt: str) -> List[str]:
"""
生成图像
Args:
prompt: 提示词
Returns:
图片本地路径列表
"""
api_config = self.config["api"]
gen_config = self.config["generation"]
max_retry = gen_config["max_retry_attempts"]
for attempt in range(max_retry):
if attempt > 0:
await asyncio.sleep(min(2 ** attempt, 10))
try:
url = f"{api_config['base_url'].rstrip('/')}/v1/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_config['api_key']}"
}
payload = {
"model": api_config["model"],
"messages": [{"role": "user", "content": prompt}],
"stream": True
}
logger.info(f"NanoImage请求: {api_config['model']}, 提示词长度: {len(prompt)} 字符")
logger.debug(f"完整提示词: {prompt}")
# 设置超时时间
max_timeout = min(api_config["timeout"], 600)
timeout = httpx.Timeout(
connect=10.0,
read=max_timeout,
write=10.0,
pool=10.0
)
# 获取代理配置
proxy = await self._get_proxy()
async with httpx.AsyncClient(timeout=timeout, proxy=proxy) as client:
async with client.stream("POST", url, json=payload, headers=headers) as response:
logger.debug(f"收到响应状态码: {response.status_code}")
if response.status_code == 200:
# 处理流式响应
image_url = None
full_content = ""
async for line in response.aiter_lines():
if line.startswith("data: "):
data_str = line[6:]
if data_str == "[DONE]":
break
try:
import json
data = json.loads(data_str)
if "choices" in data and data["choices"]:
delta = data["choices"][0].get("delta", {})
content = delta.get("content", "")
if content:
full_content += content
if "http" in content:
# 提取图片URL
import re
urls = re.findall(r'https?://[^\s\)\]"\']+', content)
if urls:
image_url = urls[0].rstrip("'\"")
logger.info(f"提取到图片URL: {image_url}")
except Exception as e:
logger.warning(f"解析响应数据失败: {e}")
continue
# 如果没有从流中提取到URL尝试从完整内容中提取
if not image_url and full_content:
import re
urls = re.findall(r'https?://[^\s\)\]"\']+', full_content)
if urls:
image_url = urls[0].rstrip("'\"")
logger.info(f"从完整内容提取到图片URL: {image_url}")
if not image_url:
logger.error(f"未能提取到图片URL完整响应: {full_content[:500]}")
if image_url:
# 下载图片
image_path = await self._download_image(image_url)
if image_path:
logger.success("成功生成图像")
return [image_path]
else:
logger.warning(f"图片下载失败,将重试 ({attempt + 1}/{max_retry})")
continue
elif response.status_code == 401:
logger.error("API Key 认证失败")
return []
else:
error_text = await response.aread()
logger.error(f"API请求失败: {response.status_code}, {error_text[:200]}")
continue
except asyncio.TimeoutError:
logger.warning(f"请求超时,重试中... ({attempt + 1}/{max_retry})")
continue
except httpx.ReadTimeout:
logger.warning(f"读取超时,重试中... ({attempt + 1}/{max_retry})")
continue
except Exception as e:
import traceback
logger.error(f"请求异常: {type(e).__name__}: {str(e)}")
logger.error(f"异常详情:\n{traceback.format_exc()}")
continue
logger.error("图像生成失败")
return []
async def _get_proxy(self) -> Optional[str]:
"""获取 AIChat 插件的代理配置"""
try:
aichat_config_path = Path(__file__).parent.parent / "AIChat" / "config.toml"
if aichat_config_path.exists():
with open(aichat_config_path, "rb") as f:
aichat_config = tomllib.load(f)
proxy_config = aichat_config.get("proxy", {})
if proxy_config.get("enabled", False):
proxy_type = proxy_config.get("type", "socks5")
proxy_host = proxy_config.get("host", "127.0.0.1")
proxy_port = proxy_config.get("port", 7890)
proxy = f"{proxy_type}://{proxy_host}:{proxy_port}"
logger.debug(f"使用代理: {proxy}")
return proxy
except Exception as e:
logger.warning(f"读取代理配置失败: {e}")
return None
async def _download_image(self, url: str) -> Optional[str]:
"""下载图片到本地"""
try:
timeout = httpx.Timeout(connect=10.0, read=30.0, write=10.0, pool=10.0)
proxy = await self._get_proxy()
async with httpx.AsyncClient(timeout=timeout, proxy=proxy) as client:
response = await client.get(url)
response.raise_for_status()
# 生成文件名
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
uid = uuid.uuid4().hex[:8]
file_path = self.images_dir / f"nano_{ts}_{uid}.jpg"
# 保存文件
with open(file_path, "wb") as f:
f.write(response.content)
logger.info(f"图片下载成功: {file_path}")
return str(file_path)
except Exception as e:
logger.error(f"下载图片失败: {e}")
return None
@on_text_message(priority=70)
async def handle_message(self, bot: WechatHookClient, message: dict):
"""处理文本消息"""
if not self.config["behavior"]["enable_command"]:
return True
content = message.get("Content", "").strip()
from_wxid = message.get("FromWxid", "")
is_group = message.get("IsGroup", False)
# 检查群聊/私聊开关
if is_group and not self.config["behavior"]["enable_group"]:
return True
if not is_group and not self.config["behavior"]["enable_private"]:
return True
# 检查是否是绘图命令
keywords = self.config["behavior"]["command_keywords"]
matched_keyword = None
for keyword in keywords:
if content.startswith(keyword + " ") or content == keyword:
matched_keyword = keyword
break
if not matched_keyword:
return True
# 提取提示词
prompt = content[len(matched_keyword):].strip()
if not prompt:
await bot.send_text(from_wxid, f"❌ 请提供绘图提示词\n用法: {matched_keyword} <提示词>")
return False
logger.info(f"收到绘图请求: {prompt[:50]}...")
try:
# 生成图像
image_paths = await self.generate_image(prompt)
if image_paths:
# 直接发送图片
await bot.send_image(from_wxid, image_paths[0])
logger.success("绘图成功,已发送图片")
else:
await bot.send_text(from_wxid, "❌ 图像生成失败,请稍后重试")
except Exception as e:
logger.error(f"绘图处理失败: {e}")
await bot.send_text(from_wxid, f"❌ 处理失败: {str(e)}")
return False
def get_llm_tools(self) -> List[dict]:
"""返回 LLM 工具定义"""
if not self.config["llm_tool"]["enabled"]:
return []
return [{
"type": "function",
"function": {
"name": self.config["llm_tool"]["tool_name"],
"description": self.config["llm_tool"]["tool_description"],
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "图像生成提示词,描述想要生成的图像内容"
}
},
"required": ["prompt"]
}
}
}]
async def execute_llm_tool(self, tool_name: str, arguments: dict, bot: WechatHookClient, from_wxid: str) -> dict:
"""执行 LLM 工具调用"""
expected_tool_name = self.config["llm_tool"]["tool_name"]
if tool_name != expected_tool_name:
return None
try:
prompt = arguments.get("prompt")
if not prompt:
return {"success": False, "message": "缺少提示词参数"}
logger.info(f"LLM工具调用绘图: {prompt[:50]}...")
# 生成图像
image_paths = await self.generate_image(prompt)
if image_paths:
# 直接发送图片
await bot.send_image(from_wxid, image_paths[0])
return {
"success": True,
"message": "已生成并发送图像",
"images": [image_paths[0]]
}
else:
return {"success": False, "message": "图像生成失败"}
except Exception as e:
logger.error(f"LLM工具执行失败: {e}")
return {"success": False, "message": f"执行失败: {str(e)}"}