""" Kiira2 AI绘图插件 支持命令触发和LLM工具调用 """ import asyncio import tomllib import httpx import uuid from pathlib import Path from datetime import datetime from typing import List, Optional from loguru import logger from utils.plugin_base import PluginBase from utils.decorators import on_text_message from WechatHook import WechatHookClient class TokenState: """Token轮询状态管理""" def __init__(self): self.token_index = 0 self._lock = asyncio.Lock() async def get_next_token(self, tokens: List[str]) -> str: """获取下一个可用的token""" async with self._lock: if not tokens: raise ValueError("Token列表为空") return tokens[self.token_index % len(tokens)] async def rotate(self, tokens: List[str]): """轮换到下一个token""" async with self._lock: if tokens: self.token_index = (self.token_index + 1) % len(tokens) class Kiira2AI(PluginBase): """Kiira2 AI绘图插件""" description = "Kiira2 AI绘图插件 - 支持AI绘图和LLM工具调用" author = "ShiHao" version = "1.0.0" def __init__(self): super().__init__() self.config = None self.token_state = TokenState() self.images_dir = None async def async_init(self): """异步初始化""" config_path = Path(__file__).parent / "config.toml" with open(config_path, "rb") as f: self.config = tomllib.load(f) # 创建图片目录 self.images_dir = Path(__file__).parent / "images" self.images_dir.mkdir(exist_ok=True) logger.success(f"Kiira2 AI插件初始化完成,配置了 {len(self.config['api']['tokens'])} 个token") async def generate_image(self, prompt: str, **kwargs) -> List[str]: """ 生成图像 Args: prompt: 提示词 **kwargs: 其他参数(model) Returns: 图片本地路径列表 """ api_config = self.config["api"] gen_config = self.config["generation"] model = kwargs.get("model", gen_config["default_model"]) tokens = api_config["tokens"] max_retry = gen_config["max_retry_attempts"] # 尝试每个token for token_attempt in range(len(tokens)): current_token = await self.token_state.get_next_token(tokens) for attempt in range(max_retry): if attempt > 0: await asyncio.sleep(min(2 ** attempt, 10)) try: url = f"{api_config['base_url'].rstrip('/')}/v1/chat/completions" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {current_token}" } payload = { "model": model, "messages": [{"role": "user", "content": prompt}], "stream": False } logger.info(f"Kiira2 AI请求: {model}, 提示词: {prompt[:50]}...") timeout = httpx.Timeout(connect=10.0, read=api_config["timeout"], write=10.0, pool=10.0) # 配置代理 proxy = None proxy_config = self.config.get("proxy", {}) if proxy_config.get("enabled", False): proxy_type = proxy_config.get("type", "socks5") proxy_host = proxy_config.get("host", "127.0.0.1") proxy_port = proxy_config.get("port", 7890) proxy = f"{proxy_type}://{proxy_host}:{proxy_port}" logger.info(f"使用代理: {proxy}") async with httpx.AsyncClient(timeout=timeout, proxy=proxy) as client: response = await client.post(url, json=payload, headers=headers) if response.status_code == 200: data = response.json() logger.debug(f"API返回数据: {data}") if "error" in data: logger.error(f"API错误: {data['error']}") continue # 检查是否返回空content(图片还在生成中) if "choices" in data and data["choices"]: message = data["choices"][0].get("message", {}) content = message.get("content", "") video_url = message.get("video_url") # 如果content为空且没有video_url,说明还在生成,等待后重试 if not content and not video_url: wait_time = min(10 + attempt * 5, 30) logger.info(f"图片生成中,等待 {wait_time} 秒后重试...") await asyncio.sleep(wait_time) continue # 提取图片URL image_paths = await self._extract_images(data) if image_paths: logger.success(f"成功生成 {len(image_paths)} 张图像") return image_paths else: logger.warning(f"未找到图像数据,API返回: {str(data)[:500]}") continue elif response.status_code == 401: logger.warning("Token认证失败,尝试下一个token") break elif response.status_code == 429: logger.warning("请求频率限制,等待后重试") await asyncio.sleep(5) continue else: error_text = response.text logger.error(f"API请求失败: {response.status_code}, {error_text[:200]}") continue except asyncio.TimeoutError: logger.warning(f"请求超时,重试中... ({attempt + 1}/{max_retry})") continue except Exception as e: logger.error(f"请求异常: {e}") continue # 当前token失败,轮换 await self.token_state.rotate(tokens) logger.error("所有token都失败了") return [] async def _extract_images(self, data: dict) -> List[str]: """从API响应中提取图片(只提取图片,忽略文字)""" import re image_paths = [] # OpenAI格式的choices if "choices" in data and data["choices"]: for choice in data["choices"]: message = choice.get("message", {}) # 检查video_url字段(实际包含图片URL) if "video_url" in message: video_url = message["video_url"] if isinstance(video_url, list) and video_url: url = video_url[0] if isinstance(url, str) and url.startswith("http"): path = await self._download_image(url) if path: image_paths.append(path) # 检查content字段 if "content" in message and not image_paths: content = message["content"] if content and "http" in content: urls = re.findall(r'https?://[^\s\)\]"]+', content) for url in urls: path = await self._download_image(url) if path: image_paths.append(path) return image_paths async def _download_image(self, url: str) -> Optional[str]: """下载图片到本地""" try: timeout = httpx.Timeout(connect=10.0, read=30.0, write=10.0, pool=10.0) # 配置代理 proxy = None proxy_config = self.config.get("proxy", {}) if proxy_config.get("enabled", False): proxy_type = proxy_config.get("type", "socks5") proxy_host = proxy_config.get("host", "127.0.0.1") proxy_port = proxy_config.get("port", 7890) proxy = f"{proxy_type}://{proxy_host}:{proxy_port}" async with httpx.AsyncClient(timeout=timeout, proxy=proxy) as client: response = await client.get(url) response.raise_for_status() # 生成文件名 ts = datetime.now().strftime("%Y%m%d_%H%M%S") uid = uuid.uuid4().hex[:8] file_path = self.images_dir / f"kiira2_{ts}_{uid}.jpg" # 保存文件 with open(file_path, "wb") as f: f.write(response.content) logger.info(f"图片下载成功: {file_path}") return str(file_path) except Exception as e: logger.error(f"下载图片失败: {e}") return None @on_text_message(priority=70) async def handle_message(self, bot: WechatHookClient, message: dict): """处理文本消息""" if not self.config["behavior"]["enable_command"]: return True content = message.get("Content", "").strip() from_wxid = message.get("FromWxid", "") is_group = message.get("IsGroup", False) # 检查群聊/私聊开关 if is_group and not self.config["behavior"]["enable_group"]: return True if not is_group and not self.config["behavior"]["enable_private"]: return True # 检查是否是绘图命令 keywords = self.config["behavior"]["command_keywords"] matched_keyword = None for keyword in keywords: if content.startswith(keyword + " "): matched_keyword = keyword break if not matched_keyword: return True # 提取提示词 prompt = content[len(matched_keyword):].strip() if not prompt: await bot.send_text(from_wxid, "❌ 请提供绘图提示词\n用法: /画画 <提示词>") return False logger.info(f"收到绘图请求: {prompt[:50]}...") # 发送处理中提示 await bot.send_text(from_wxid, "🎨 正在为您生成图像,请稍候...") try: # 生成图像 image_paths = await self.generate_image(prompt) if image_paths: # 直接发送图片 await bot.send_image(from_wxid, image_paths[0]) logger.success(f"绘图成功,已发送图片") else: await bot.send_text(from_wxid, "❌ 图像生成失败,请稍后重试") except Exception as e: logger.error(f"绘图处理失败: {e}") await bot.send_text(from_wxid, f"❌ 处理失败: {str(e)}") return False def get_llm_tools(self) -> List[dict]: """返回LLM工具定义""" if not self.config["llm_tool"]["enabled"]: return [] return [{ "type": "function", "function": { "name": self.config["llm_tool"]["tool_name"], "description": self.config["llm_tool"]["tool_description"], "parameters": { "type": "object", "properties": { "prompt": { "type": "string", "description": "图像生成提示词,描述想要生成的图像内容" } }, "required": ["prompt"] } } }] async def execute_llm_tool(self, tool_name: str, arguments: dict, bot: WechatHookClient, from_wxid: str) -> dict: """执行LLM工具调用""" expected_tool_name = self.config["llm_tool"]["tool_name"] if tool_name != expected_tool_name: return None try: prompt = arguments.get("prompt") if not prompt: return {"success": False, "message": "缺少提示词参数"} logger.info(f"LLM工具调用绘图: {prompt[:50]}...") # 生成图像 image_paths = await self.generate_image(prompt=prompt) if image_paths: # 直接发送图片 await bot.send_image(from_wxid, image_paths[0]) return { "success": True, "message": "已生成并发送图像", "images": [image_paths[0]] } else: return {"success": False, "message": "图像生成失败"} except Exception as e: logger.error(f"LLM工具执行失败: {e}") return {"success": False, "message": f"执行失败: {str(e)}"}