373 lines
14 KiB
Python
373 lines
14 KiB
Python
"""
|
||
即梦AI绘图插件
|
||
|
||
支持命令触发和LLM工具调用
|
||
"""
|
||
|
||
import asyncio
|
||
import tomllib
|
||
import aiohttp
|
||
import uuid
|
||
from pathlib import Path
|
||
from datetime import datetime
|
||
from typing import List, Optional
|
||
from loguru import logger
|
||
from utils.plugin_base import PluginBase
|
||
from utils.decorators import on_text_message
|
||
from WechatHook import WechatHookClient
|
||
|
||
|
||
class TokenState:
|
||
"""Token轮询状态管理"""
|
||
def __init__(self):
|
||
self.token_index = 0
|
||
self._lock = asyncio.Lock()
|
||
|
||
async def get_next_token(self, tokens: List[str]) -> str:
|
||
"""获取下一个可用的token"""
|
||
async with self._lock:
|
||
if not tokens:
|
||
raise ValueError("Token列表为空")
|
||
return tokens[self.token_index % len(tokens)]
|
||
|
||
async def rotate(self, tokens: List[str]):
|
||
"""轮换到下一个token"""
|
||
async with self._lock:
|
||
if tokens:
|
||
self.token_index = (self.token_index + 1) % len(tokens)
|
||
|
||
|
||
class JimengAI(PluginBase):
|
||
"""即梦AI绘图插件"""
|
||
|
||
description = "即梦AI绘图插件 - 支持AI绘图和LLM工具调用"
|
||
author = "ShiHao"
|
||
version = "1.0.0"
|
||
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.config = None
|
||
self.token_state = TokenState()
|
||
self.images_dir = None
|
||
|
||
async def async_init(self):
|
||
"""异步初始化"""
|
||
config_path = Path(__file__).parent / "config.toml"
|
||
with open(config_path, "rb") as f:
|
||
self.config = tomllib.load(f)
|
||
|
||
# 创建图片目录
|
||
self.images_dir = Path(__file__).parent / "images"
|
||
self.images_dir.mkdir(exist_ok=True)
|
||
|
||
logger.success(f"即梦AI插件初始化完成,配置了 {len(self.config['api']['tokens'])} 个token")
|
||
|
||
async def generate_image(self, prompt: str, **kwargs) -> List[str]:
|
||
"""
|
||
生成图像
|
||
|
||
Args:
|
||
prompt: 提示词
|
||
**kwargs: 其他参数(model, width, height, sample_strength, negative_prompt)
|
||
|
||
Returns:
|
||
图片本地路径列表
|
||
"""
|
||
api_config = self.config["api"]
|
||
gen_config = self.config["generation"]
|
||
|
||
model = kwargs.get("model", gen_config["default_model"])
|
||
width = kwargs.get("width", gen_config["default_width"])
|
||
height = kwargs.get("height", gen_config["default_height"])
|
||
sample_strength = kwargs.get("sample_strength", gen_config["default_sample_strength"])
|
||
negative_prompt = kwargs.get("negative_prompt", gen_config["default_negative_prompt"])
|
||
|
||
# 参数验证
|
||
sample_strength = max(0.0, min(1.0, sample_strength))
|
||
width = max(64, min(2048, width))
|
||
height = max(64, min(2048, height))
|
||
|
||
tokens = api_config["tokens"]
|
||
max_retry = gen_config["max_retry_attempts"]
|
||
|
||
# 尝试每个token
|
||
for token_attempt in range(len(tokens)):
|
||
current_token = await self.token_state.get_next_token(tokens)
|
||
|
||
for attempt in range(max_retry):
|
||
if attempt > 0:
|
||
await asyncio.sleep(min(2 ** attempt, 10))
|
||
|
||
try:
|
||
url = f"{api_config['base_url'].rstrip('/')}/v1/chat/completions"
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {current_token}"
|
||
}
|
||
|
||
payload = {
|
||
"model": model,
|
||
"messages": [{"role": "user", "content": prompt}],
|
||
"prompt": prompt,
|
||
"negativePrompt": negative_prompt,
|
||
"width": width,
|
||
"height": height,
|
||
"sample_strength": sample_strength
|
||
}
|
||
|
||
logger.info(f"即梦AI请求: {model}, 尺寸: {width}x{height}, 提示词: {prompt[:50]}...")
|
||
|
||
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=api_config["timeout"])) as session:
|
||
async with session.post(url, headers=headers, json=payload) as response:
|
||
if response.status == 200:
|
||
data = await response.json()
|
||
logger.debug(f"API返回数据: {data}")
|
||
|
||
if "error" in data:
|
||
logger.error(f"API错误: {data['error']}")
|
||
continue
|
||
|
||
# 提取图片URL
|
||
image_paths = await self._extract_images(data)
|
||
|
||
if image_paths:
|
||
logger.success(f"成功生成 {len(image_paths)} 张图像")
|
||
return image_paths
|
||
else:
|
||
logger.warning(f"未找到图像数据,API返回: {str(data)[:200]}")
|
||
continue
|
||
|
||
elif response.status == 401:
|
||
logger.warning("Token认证失败,尝试下一个token")
|
||
break
|
||
elif response.status == 429:
|
||
logger.warning("请求频率限制,等待后重试")
|
||
await asyncio.sleep(5)
|
||
continue
|
||
else:
|
||
error_text = await response.text()
|
||
logger.error(f"API请求失败: {response.status}, {error_text[:200]}")
|
||
continue
|
||
|
||
except asyncio.TimeoutError:
|
||
logger.warning(f"请求超时,重试中... ({attempt + 1}/{max_retry})")
|
||
continue
|
||
except Exception as e:
|
||
logger.error(f"请求异常: {e}")
|
||
continue
|
||
|
||
# 当前token失败,轮换
|
||
await self.token_state.rotate(tokens)
|
||
|
||
logger.error("所有token都失败了")
|
||
return []
|
||
|
||
async def _extract_images(self, data: dict) -> List[str]:
|
||
"""从API响应中提取图片"""
|
||
import re
|
||
image_paths = []
|
||
|
||
# 格式1: OpenAI格式的choices
|
||
if "choices" in data and data["choices"]:
|
||
for choice in data["choices"]:
|
||
if "message" in choice and "content" in choice["message"]:
|
||
content = choice["message"]["content"]
|
||
if "https://" in content:
|
||
urls = re.findall(r'https://[^\s\)]+', content)
|
||
for url in urls:
|
||
path = await self._download_image(url)
|
||
if path:
|
||
image_paths.append(path)
|
||
|
||
# 格式2: data数组
|
||
elif "data" in data:
|
||
data_list = data["data"] if isinstance(data["data"], list) else [data["data"]]
|
||
for item in data_list:
|
||
if isinstance(item, str) and item.startswith("http"):
|
||
path = await self._download_image(item)
|
||
if path:
|
||
image_paths.append(path)
|
||
elif isinstance(item, dict) and "url" in item:
|
||
path = await self._download_image(item["url"])
|
||
if path:
|
||
image_paths.append(path)
|
||
|
||
# 格式3: images数组
|
||
elif "images" in data:
|
||
images_list = data["images"] if isinstance(data["images"], list) else [data["images"]]
|
||
for item in images_list:
|
||
if isinstance(item, str) and item.startswith("http"):
|
||
path = await self._download_image(item)
|
||
if path:
|
||
image_paths.append(path)
|
||
elif isinstance(item, dict) and "url" in item:
|
||
path = await self._download_image(item["url"])
|
||
if path:
|
||
image_paths.append(path)
|
||
|
||
# 格式4: 单个URL
|
||
elif "url" in data:
|
||
path = await self._download_image(data["url"])
|
||
if path:
|
||
image_paths.append(path)
|
||
|
||
return image_paths
|
||
|
||
async def _download_image(self, url: str) -> Optional[str]:
|
||
"""下载图片到本地"""
|
||
try:
|
||
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=30)) as session:
|
||
async with session.get(url) as response:
|
||
if response.status == 200:
|
||
content = await response.read()
|
||
|
||
# 生成文件名
|
||
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||
uid = uuid.uuid4().hex[:8]
|
||
file_path = self.images_dir / f"jimeng_{ts}_{uid}.jpg"
|
||
|
||
# 保存文件
|
||
with open(file_path, "wb") as f:
|
||
f.write(content)
|
||
|
||
logger.info(f"图片下载成功: {file_path}")
|
||
return str(file_path)
|
||
except Exception as e:
|
||
logger.error(f"下载图片失败: {e}")
|
||
return None
|
||
|
||
@on_text_message(priority=70)
|
||
async def handle_message(self, bot: WechatHookClient, message: dict):
|
||
"""处理文本消息"""
|
||
if not self.config["behavior"]["enable_command"]:
|
||
return True
|
||
|
||
content = message.get("Content", "").strip()
|
||
from_wxid = message.get("FromWxid", "")
|
||
is_group = message.get("IsGroup", False)
|
||
|
||
# 检查群聊/私聊开关
|
||
if is_group and not self.config["behavior"]["enable_group"]:
|
||
return True
|
||
if not is_group and not self.config["behavior"]["enable_private"]:
|
||
return True
|
||
|
||
# 检查是否是绘图命令(精确匹配命令+空格+提示词)
|
||
keywords = self.config["behavior"]["command_keywords"]
|
||
matched_keyword = None
|
||
for keyword in keywords:
|
||
if content.startswith(keyword + " "):
|
||
matched_keyword = keyword
|
||
break
|
||
|
||
if not matched_keyword:
|
||
return True
|
||
|
||
# 提取提示词
|
||
prompt = content[len(matched_keyword):].strip()
|
||
if not prompt:
|
||
await bot.send_text(from_wxid, "❌ 请提供绘图提示词\n用法: /绘图 <提示词>")
|
||
return False
|
||
|
||
logger.info(f"收到绘图请求: {prompt[:50]}...")
|
||
|
||
# 发送处理中提示
|
||
await bot.send_text(from_wxid, "🎨 正在为您生成图像,请稍候...")
|
||
|
||
try:
|
||
# 生成图像
|
||
image_paths = await self.generate_image(prompt)
|
||
|
||
if image_paths:
|
||
# 直接发送图片
|
||
await bot.send_image(from_wxid, image_paths[0])
|
||
logger.success(f"绘图成功,已发送图片")
|
||
else:
|
||
await bot.send_text(from_wxid, "❌ 图像生成失败,请稍后重试")
|
||
|
||
except Exception as e:
|
||
logger.error(f"绘图处理失败: {e}")
|
||
await bot.send_text(from_wxid, f"❌ 处理失败: {str(e)}")
|
||
|
||
return False
|
||
|
||
def get_llm_tools(self) -> List[dict]:
|
||
"""
|
||
返回LLM工具定义
|
||
供AIChat插件调用
|
||
"""
|
||
if not self.config["llm_tool"]["enabled"]:
|
||
return []
|
||
|
||
return [{
|
||
"type": "function",
|
||
"function": {
|
||
"name": self.config["llm_tool"]["tool_name"],
|
||
"description": self.config["llm_tool"]["tool_description"],
|
||
"parameters": {
|
||
"type": "object",
|
||
"properties": {
|
||
"prompt": {
|
||
"type": "string",
|
||
"description": "图像生成提示词,描述想要生成的图像内容"
|
||
},
|
||
"width": {
|
||
"type": "integer",
|
||
"description": "图像宽度(64-2048),默认1024",
|
||
"default": 1024
|
||
},
|
||
"height": {
|
||
"type": "integer",
|
||
"description": "图像高度(64-2048),默认1024",
|
||
"default": 1024
|
||
}
|
||
},
|
||
"required": ["prompt"]
|
||
}
|
||
}
|
||
}]
|
||
|
||
async def execute_llm_tool(self, tool_name: str, arguments: dict, bot: WechatHookClient, from_wxid: str) -> dict:
|
||
"""
|
||
执行LLM工具调用
|
||
供AIChat插件调用
|
||
|
||
Returns:
|
||
{"success": bool, "message": str, "images": List[str]}
|
||
"""
|
||
expected_tool_name = self.config["llm_tool"]["tool_name"]
|
||
logger.info(f"JimengAI工具检查: 收到={tool_name}, 期望={expected_tool_name}")
|
||
|
||
if tool_name != expected_tool_name:
|
||
return None # 不是本插件的工具,返回None让其他插件处理
|
||
|
||
try:
|
||
prompt = arguments.get("prompt")
|
||
if not prompt:
|
||
return {"success": False, "message": "缺少提示词参数"}
|
||
|
||
logger.info(f"LLM工具调用绘图: {prompt[:50]}...")
|
||
|
||
# 生成图像(使用配置的默认尺寸)
|
||
gen_config = self.config["generation"]
|
||
image_paths = await self.generate_image(
|
||
prompt=prompt,
|
||
width=arguments.get("width", gen_config["default_width"]),
|
||
height=arguments.get("height", gen_config["default_height"])
|
||
)
|
||
|
||
if image_paths:
|
||
# 直接发送图片
|
||
await bot.send_image(from_wxid, image_paths[0])
|
||
return {
|
||
"success": True,
|
||
"message": "已生成并发送图像",
|
||
"images": [image_paths[0]]
|
||
}
|
||
else:
|
||
return {"success": False, "message": "图像生成失败"}
|
||
|
||
except Exception as e:
|
||
logger.error(f"LLM工具执行失败: {e}")
|
||
return {"success": False, "message": f"执行失败: {str(e)}"}
|